这篇博文重点讲状态依赖的最短路问题
以spfa,负环判断为主
另外还讲了一些最短路算法在实践中的应用

状态依赖的SPFA算法

电梯调度问题

(x,j)(x, j) 表示电梯当前在xx 层,手柄位置为jj
spfa queue statues\text{spfa queue statues}:=vis(x,j):= vis(x, j)

for i[1,m]next position\textbf{for}\ \forall i \in [1, m] \leftrightarrow \text{next position}
      ~~~~~~w=ij+2C(i)w=|i-j|+2|C(i)|

d(x+C[i],i)=min{d(x+C[i],i),d(x,j)+w} run spfa()\begin{gathered} d(x+C[i], i) = \min\{d(x+C[i],i), d(x,j)+w\} \\ \ \\ \text{run spfa()} \end{gathered}

spfa算法注意点
在计算下一个状态的时候
判断

1
!inq[next]
1
2
3
4
5
6
if(D[next] > D[cur] + w) {
if(!inq[next]) {
que.push(next);
inq[next] = 1;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#define MPR(a, b) make_pair(a, b)

const int maxn = 1000 + 5;
const int maxm = 20 + 5;
const int inf = 0x3f3f3f3f;
int n, m;

int D[maxn][maxm], inq[maxn][maxm];
typedef pair<int, int> PII;
int C[maxn];

// == run spfa ==
void initSpfa() {
Set(inq, 0);
Set(D, inf);
}

void spfa(int st_x, int st_j) {
queue<PII> que;
que.push(MPR(st_x, st_j));
D[st_x][st_j] = 0;
inq[st_x][st_j] = 1;

while (!que.empty()) {
int x = que.front().first;
int j = que.front().second;
que.pop();
inq[x][j] = 0;

_rep(i, 1, m) {
int nx = x + C[i];
int w = abs(i - j) + 2 * abs(C[i]);
if(nx < 1 || nx > n) continue;

if(D[nx][i] > D[x][j] + w) {
D[nx][i] = D[x][j] + w;
if(!inq[nx][i]) {
que.push(MPR(nx, i));
inq[nx][i] = 1;
}
}
}
}
}
// == spfa finsihed ==

int main() {
freopen("input.txt", "r", stdin);
scanf("%d%d", &n, &m);
int pos = 0;
_rep(i, 1, m) {
scanf("%d", &C[i]);
if(C[i] == 0) pos = i;
}

// then spfa
initSpfa();
spfa(1, pos);

int ans = inf;
_rep(i, 1, m) ans = min(ans, D[n][i]);

if(ans == inf) puts("-1");
else printf("%d\n", ans);
}

floyd路径统计

algorithm

c(i,j)c(i, j) 用来记录iji \rightarrow j 最短路的条数

  • for e(u,v)E(G)\textbf{for} \ \forall e(u, v) \in E(G)
          ~~~~~~init: c(u,v)=1\text{init}: \ c(u, v) = 1

  • ifd(u,v)>d(u,k)+d(k,v)\textbf{if} \quad d(u,v) > d(u, k) + d(k, v)
          ~~~~~~c(u,v)=c(u,k)c(k,v)c(u, v) = c(u, k) \cdot c(k, v)

    ifd(u,v)=d(u,k)+d(k,v)\textbf{if} \quad d(u, v) = d(u, k) + d(k, v)
          ~~~~~~c(u,v)+=c(u,k)c(k,v)c(u, v) += c(u, k) \cdot c(k, v)

  • 经过kk 的最短路,满足floyd\textbf{floyd} 方程
    (i,j),ij,d(i,j)=d(i,k)+d(k,j)\forall (i, j), i \neq j, \quad d(i,j) = d(i,k)+d(k, j)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
const int maxn = 100 + 10;
const int inf = 0x3f3f3f3f;
int n, m;

int d[maxn][maxn];
ll c[maxn][maxn];
double ans[maxn];

void initFloyd() {
Set(d, inf);
_rep(i, 0, n) d[i][i] = 0;

Set(c, 0);
Set(ans, 0.0);
}

void floyd() {
_rep(k, 1, n) _rep(i, 1, n) _rep(j, 1, n) {
if(i != j && k != i && k != j) {
if(d[i][j] > d[i][k] + d[k][j]) {
d[i][j] = d[i][k] + d[k][j];
c[i][j] = 1ll * c[i][k] * c[k][j];
}
else if(d[i][j] == d[i][k] + d[k][j]) {
c[i][j] += 1ll * c[i][k] * c[k][j];
}
}
}
}

void solve() {
_rep(k, 1, n) _rep(i, 1, n) _rep(j, 1, n) {
if(i != j && k != i && k != j) {
if(d[i][j] == d[i][k] + d[k][j]) {
ans[k] += (double) c[i][k] * c[k][j] / c[i][j];
}
}
}
_rep(i, 1, n) printf("%.3lf\n", ans[i]);
}


int main() {
freopen("input.txt", "r", stdin);
scanf("%d%d", &n, &m);

initFloyd();

_for(i, 0, m) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
d[x][y] = d[y][x] = z;
c[x][y] = c[y][x] = 1ll;
}

floyd();
solve();
}

Dijkstra和DAG上的dp

algorithm\textbf{algorithm}

  • run dijkstra()\text{run dijkstra()}
          ~~~~~~we get u, D(u)\textbf{we}\ \textbf{get} \ \forall u, \ \textbf{D(u)}
  • dp(sted), begin: consider ed\textbf{dp}(st\leftarrow ed) ,\ \textbf{begin:} \ \textbf{consider} \ \textbf{ed}
          ~~~~~~f(ed)=1,f(v/ed)=0f(ed) = 1, f(v/ed) = 0
          ~~~~~~sort according to D[u]ord[], ord0=ed\textbf{sort} \ \textbf{according} \ \textbf{to} \ D[u]\rightarrow ord[\cdots], \ ord_0 = ed
          ~~~~~~now D(ord0)=0,D(ord1),D(ord2)\textbf{now} \ D(ord_0)=0, D(ord_1), D(ord_2) \uparrow \cdots
          ~~~~~~for x=ordi for e(x,y)\textbf{for} \ \forall x = ord_i \ \textbf{for} \ \forall e(x, y)
          ~~~~~~    ~~~~if D(y)>D(x),f(y)+=f(x)\textbf{if} \ D(y) > D(x), f(y) += f(x)
          ~~~~~~ans is f(st)\text{ans is } f(st)

in this case, run dp() in every node\text{in this case, run dp() in } \textbf{every} \ \textbf{node}

  • dp(sted),begin: consider dp(st, ed)\textbf{dp}(st\rightarrow ed), \textbf{begin:} \ \textbf{consider} \ \textbf{dp(st,} \ \textbf{ed)}
          ~~~~~~init set f[]1\textbf{init} \ \textbf{set} \ f[\cdots] \leftarrow -1
          ~~~~~~dp(x,ed)\textbf{dp}(x, ed)
          ~~~~~~    ~~~~if x=ed,return 1\textbf{if} \ x = ed, \text{return } 1
          ~~~~~~    ~~~~if f(x)0,found ans, return f(x)\textbf{if} \ f(x) \geqslant 0, \text{found ans, return } f(x)
          ~~~~~~    ~~~~let f(x)=0,for e(x,y)\textbf{let} \ f(x) = 0, \textbf{for} \ \forall e(x, y)
          ~~~~~~    ~~~~    ~~~~if D(y)<D(x),f(x)+=dp(y,ed)\textbf{if} \ D(y) < D(x), f(x) +=dp(y, ed)
          ~~~~~~    ~~~~return f(x)\text{return } f(x)

run dp() recursive \text{run dp() recursive }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
const int maxn = 1000 + 10;
const int inf = 0x3f3f3f3f;
int n, m;

// == Graph definition ==
vector<int> G[maxn];

class Edge {
public:
int to, weight;
Edge() {}
Edge(int t, int w) : to(t), weight(w) {}
};

vector<Edge> edges;

void initG() {
_for(i, 0, maxn) G[i].clear();
edges.clear();
}

void addEdge(int u, int v, int w) {
edges.push_back(Edge(v, w));
G[u].push_back(edges.size() - 1);
}

class Node {
public:
int u, dist;
bool operator< (const Node& rhs) const {
return dist > rhs.dist;
}
Node() {}
Node(int u, int d) : u(u), dist(d) {}
};
// == Graph finished ==

// == dijkstra ==
int D[maxn], vis[maxn];

void initDij(int st) {
Set(D, inf);
D[st] = 0;
Set(vis, 0);
}

void dijkstra(int st) {
initDij(st);
priority_queue<Node> que;
que.push(Node(st, 0));

while (!que.empty()) {
int x = que.top().u;
que.pop();
if(vis[x]) continue;
vis[x] = 1;

_for(i, 0, G[x].size()) {
const Edge& e = edges[G[x][i]];
int y = e.to;

if(D[y] > D[x] + e.weight) {
D[y] = D[x] + e.weight;
que.push(Node(y, D[y]));
}
}
}
}
// == dijkstra finished ==

// == dp ==
inline bool cmp(int a, int b) {
return D[a] < D[b];
}
int ord[maxn];
int f[maxn];
void initDP(const int ed) {
_rep(i, 1, n) ord[i] = i;
sort(ord + 1, ord + 1 + n, cmp);
//assert(ed == ord[1]);

Set(f, 0);
f[ed] = 1;
}

void dp(const int st) {
_rep(i, 1, n) {
int x = ord[i];
_for(j, 0, G[x].size()) {
int y = edges[G[x][j]].to;
if(D[y] > D[x]) f[y] += f[x];
}
}
printf("%d\n", f[st]);
}

void initDP() {
Set(f, -1);
}
int dp(int x, const int ed) {
if(x == ed) return 1;
if(f[x] >= 0) return f[x];

f[x] = 0;
_for(i, 0, G[x].size()) {
int y = edges[G[x][i]].to;
if(D[y] < D[x]) f[x] += dp(y, ed);
}
return f[x];
}
// == dp finsiehd ==

int main() {
freopen("input.txt", "r", stdin);
while (scanf("%d%d", &n, &m) == 2 && n) {
initG();
_for(i, 0, m) {
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
addEdge(x, y, z);
addEdge(y, x, z);
}

// run dijkstra
dijkstra(2);

// then dp
initDP(2);
dp(1);

//initDP();
//printf("%d\n", dp(1, 2));
}
}

最短路树

algorithm: e(x,u):=p(u) is the forward arc(前向弧)\textbf{algorithm:} \ e(x, u):=p(u) \ \textbf{is} \ \textbf{the} \ \textbf{forward} \ \textbf{arc(前向弧)}
run dijkstra() and record p()\textbf{run} \ dijkstra() \text{ and record } p()

Dijkstra-Tree :=p(u)pathe(p(u))\textbf{Dijkstra-Tree} \ \textbf{:=} \bigcup\limits_{p(u) \in path}e(p(u))

  • init:W(u,v)=weightsw(u,v)\textbf{init:} \quad W(u, v) = \bigcup\limits_{weights}w(u, v)
    multiple edges, idx(u,v):=edge number\text{multiple edges, } idx(u, v) := \text{edge number}
    used(src,u,v):= run dijkstra(src),e(u,v) is Tree-edge or notused(src, u, v):= \text{ run dijkstra}(src), e(u, v)\text{ is Tree-edge or not}

  • for srcV(G)\textbf{for} \ \forall src \in V(G)
          ~~~~~~run Dijkstra(src) mark p()\textbf{run}\ \textbf{Dijkstra}(src) \rightarrow \text{ mark } p(\cdots)
          ~~~~~~for uV(G),e(u,v)Dijkstra-Tree(G)\textbf{for}\ \forall u \in V(G), \forall e(u, v) \in \textbf{Dijkstra-Tree}(G)
          ~~~~~~    ~~~~C(src)=uD(u), mark used(src,u,v)C(src) = \sum_u D(u), \text{ mark } used(src, u, v)
    ans=C(src)\textbf{ans} = \sum C(src)

  • consider delete operation\textbf{consider} \ \textbf{delete} \ \textbf{operation}
          ~~~~~~del(u,v)w(u,v)=0 or w(u,v)=W(u,v)[2,3,]\textbf{del}(u, v)\Rightarrow w(u, v) = 0 \ \textbf{or} \ w(u, v) = W(u, v)[2, 3, \cdots]
          ~~~~~~for srcV(G)\textbf{for} \ \forall src \in V(G)
              ~~~~~~~~~~if used(src,u,v)=0, ans =C(src)\textbf{if} \ used(src, u, v)=0, \ \textbf{ans} \ = \sum C(src)
              ~~~~~~~~~~else rebuild Dijkstra-Tree\textbf{else} \ \text{rebuild Dijkstra-Tree}
                  ~~~~~~~~~~~~~~run Dijkstra(src)\text{run Dijkstra}(src)
                  ~~~~~~~~~~~~~~for uV(G)\textbf{for} \ \forall u \in V(G)
                      ~~~~~~~~~~~~~~~~~~ans=D(u)\textbf{ans} = \sum D(u)

    reset w(u,v)=W(u,v)[0]\textbf{reset} \ w(u, v) = W(u, v)[0]

UVA1416

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
const int maxn = 100 + 10;
const int inf = 0x3f3f3f3f;
int n, m, L;

vector<int> W[maxn][maxn];
int used[maxn][maxn][maxn];
int idx[maxn][maxn];

// == Graph definition ==
vector<int> G[maxn];

class Edge {
public:
int from, to, weight;
Edge() {}
Edge(int f, int t, int w) : from(f), to(t), weight(w) {}
};

class Node {
public:
int u, dist;
Node() {}
Node(int u, int d) : u(u), dist(d) {}
bool operator< (const Node& rhs) const {
return dist > rhs.dist;
}
};

vector<Edge> edges;

void initG() {
_for(i, 0, maxn) G[i].clear();
edges.clear();
}

void addEdge(int u, int v, int w) {
edges.push_back(Edge(u, v, w));
G[u].push_back(edges.size() - 1);
idx[u][v] = edges.size() - 1;
}
// == Graph finished ==

// == Dijkstra ==
int p[maxn];
int D[maxn], vis[maxn];

void initDij(int st) {
Set(p, 0);
Set(vis, 0);
Set(D, inf);
D[st] = 0;
}

void dijkstra(int st) {
initDij(st);
priority_queue<Node> que;
que.push(Node(st, 0));

while (!que.empty()) {
int x = que.top().u;
que.pop();
if(vis[x]) continue;
vis[x] = 1;

_for(i, 0, G[x].size()) {
const Edge& e = edges[G[x][i]];
int y = e.to;

if(e.weight > 0 && D[y] > D[x] + e.weight) {
D[y] = D[x] + e.weight;
p[y] = G[x][i];
que.push(Node(y, D[y]));
}
}
}
}
// == Dijkstra finished ==

// == solver ==
int C[maxn];

void initCal() {
Set(C, 0);
}

int cal() {
initCal();

int ans = 0;
_rep(st, 1, n) {
dijkstra(st);
_rep(v, 1, n) {
if(v != st) {
int u = edges[p[v]].from;
used[st][u][v] = used[st][v][u] = 1;
}
C[st] += (D[v] == inf ? L : D[v]);
}
ans += C[st];
}
return ans;
}


int del(int u, int v) {
Edge& e1 = edges[idx[u][v]];
Edge& e2 = edges[idx[v][u]];;

if(W[u][v].size() == 1) e1.weight = e2.weight = 0;
else if(W[u][v].size() > 1) e1.weight = e2.weight = W[u][v][1];

int ans = 0;
_rep(st, 1, n) {
if(used[st][u][v] == 0) ans += C[st];
else {
dijkstra(st);
_rep(i, 1, n) ans += (D[i] == inf ? L : D[i]);
}
}

e1.weight = e2.weight = W[u][v][0];
return ans;
}
// == solver finsihed ==

void init() {
_for(i, 0, maxn) _for(j, 0, maxn) W[i][j].clear();
Set(used, 0);
Set(idx, 0);
}

int main() {
freopen("input.txt", "r", stdin);
while (scanf("%d%d%d", &n, &m, &L) == 3) {
init();
initG();

// build graph
_for(i, 0, m) {
int u, v, s;
scanf("%d%d%d", &u, &v, &s);
W[u][v].push_back(s);
W[v][u].push_back(s);
}
_rep(i, 1, n) _rep(j, i + 1, n) {
if(W[i][j].size()) {
sort(W[i][j].begin(), W[i][j].end());

addEdge(i, j, W[i][j][0]);
addEdge(j, i, W[i][j][0]);
}
}
// build finished

// solve the problem
int c1 = cal();
int c2 = -1;
_rep(i, 1, n) _rep(j, i + 1, n) if(W[i][j].size()) {
c2 = max(c2, del(i, j));
}

printf("%d %d\n", c1, c2);
}
}

Dijkstra杂题,路径输出

ceil(x):=x(离x最近的整数)\textbf{ceil}(x) := \geqslant x \textbf{(离x最近的整数)}
常常用来处理以下问题,比如每kk 个单位要缴纳11 单位
不足11 单位按11 单位来算

D(u)x=D(u)+xKD(u)+xD(u) \xrightarrow{x=\frac{D(u)+x}{K}} D(u)+x

(K1)x=D(u)x=D(u)K1 rhs=D(u)+x=ceil(D(u)K1K)\begin{gathered} (K-1)x = D(u) \Leftrightarrow x = \frac{D(u)}{K-1} \\ \ \\ \text{rhs} = D(u) + x = \textbf{ceil}(\frac{D(u)}{K-1} \cdot K) \end{gathered}

  • run dijkstra(), get Dto\text{run dijkstra}(), \ \textbf{get} \ D_{to}
    for e(x,y)\textbf{for} \ \forall e(x, y)
          ~~~~~~if D(y)>Dto,D(y)=Dto,p(y)=e(x,y)\textbf{if} \ D(y) > D_{to}, D(y)=D_{to}, p(y) = e(x, y)
          ~~~~~~if D(y)=Dto, ([x1,x2],y), x2<x1\textbf{if} \ D(y) = D_{to}, \ ([x_1, x_2], y), \ x_2 < x_1
              ~~~~~~~~~~(x1,y)(x2,y),p(y)=e(x2,y)(x_1, y) \rightarrow (x_2, y), \quad p(y) = e(x_2, y)

  • output path\text{output path}
          ~~~~~~run dijkstra(edst)\text{run dijkstra}(ed\rightarrow st)
          ~~~~~~out(edst)\text{out}(ed \leftarrow st)
          ~~~~~~out(u,V(p(u)),V(p(p(u))),)\text{out}(u, V(p(u)), V(p(p(u))), \cdots)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
const int maxn = 100 + 5;
const ll inf = 0x3f3f3f3f3f3f3f3f;
int n, P, st, ed;

// == Graph definition ==
vector<int> G[maxn];

class Edge {
public:
int from, to, isUp;
Edge() {}
Edge(int f, int t, int w) : from(f), to(t), isUp(w) {}
};

vector<Edge> edges;

class Node {
public:
int u;
ll dist;
Node() {}
Node(int u, ll d) : u(u), dist(d) {}
bool operator< (const Node& rhs) const {
return dist > rhs.dist;
}
};

void initG() {
edges.clear();
_for(i, 0, maxn) G[i].clear();
}

void addEdge(int u, int v, int isUp) {
edges.push_back(Edge(u, v, isUp));
G[u].push_back(edges.size() - 1);
}
// == Graph finsihed ==

inline int read() {
char ch[9];
scanf("%s", ch);
if(isupper(ch[0])) return ch[0] - 'A';
else return ch[0] - 'a' + 26;
}

inline char format(int u) {
return u < 26 ? 'A' + u : 'a' + (u - 26);
}

inline bool isUp(int u) {
return u < 26 ? 1 : 0;
}

// == dijkstra ==
ll D[maxn];
int vis[maxn];
int pid[maxn];

void initDij(ll P, int st) {
_for(i, 0, maxn) D[i] = inf;
D[st] = P;
Set(vis, 0);
Set(pid, 0);
pid[st] = -1;
}

void dijkstra(ll P, int st) {
initDij(P, st);
priority_queue<Node> que;
que.push(Node(st, P));

while (!que.empty()) {
int x = que.top().u;
que.pop();
//debug(D[x]);
if(vis[x]) continue;
vis[x] = 1;

_for(i, 0, G[x].size()) {
const Edge& e = edges[G[x][i]];
int y = e.to;

ll d_to;
if(e.isUp) d_to = (ll)ceil(D[x] * 1.0 / 19 * 20);
else d_to = D[x] + 1;
//debug(d_to);

if(D[y] > d_to || (D[y] == d_to && format(x) < format(edges[pid[y]].from))) {
D[y] = d_to;
pid[y] = G[x][i];
que.push(Node(y, D[y]));
}
}
}
}

void print(int u) {
if(pid[u] == -1) {
printf("%c\n", format(u));
return;
}
printf("%c-", format(u));
print(edges[pid[u]].from);
}
// == dijkstra finsihed ==

int main() {
freopen("input.txt", "r", stdin);
int kase = 0;
while (scanf("%d", &n) == 1 && n >= 0) {
initG();
printf("Case %d:\n", ++kase);

// build graph
_for(i, 0, n) {
int u = read();
int v = read();

if(u != v) {
addEdge(u, v, isUp(u));
addEdge(v, u, isUp(v));
}
}
// graph finished

// then dijkstra
scanf("%d", &P);
st = read();
ed = read();
//debug(ed);

dijkstra(P, ed);
printf("%lld\n", D[st]);
print(st);
}
}